In Vivo Simultaneous Tracing and Ca2+ Imaging of Local Neuronal Circuits
نویسندگان
چکیده
A central question about the brain is how information is processed by large populations of neurons embedded in intricate local networks. Answering this question requires not only monitoring functional dynamics of many neurons simultaneously, but also interpreting such activity patterns in the context of neuronal circuitry. Here, we introduce a versatile approach for loading Ca(2+) indicators in vivo by local electroporation. With this method, Ca(2+) imaging can be performed both at neuron population level and with exquisite subcellular resolution down to dendritic spines and axon boutons. This enabled mitral cell odor-evoked ensemble activity to be analyzed simultaneously with revealing their specific connectivity to different glomeruli. Colabeling of Purkinje cell dendrites and intersecting parallel fibers allowed Ca(2+) imaging of both presynaptic boutons and postsynaptic dendrites. This approach thus provides an unprecedented capability for in vivo visualizing active cell ensembles and tracing their underlying local neuronal circuits.
منابع مشابه
In Vivo Tracing of Human Umbilical Cord Matrix Stem Cells Useing MRI
Purpose: Human umbilical cord matrix (UCM) (Wharton jelly) stem cells labeling are tracking by MRI. Materials and Methods: After 48 hours incubation with USPIO human umbilical cord matrix (UCM) stem cells were labeled with USPIO by the means of receptor-mediated endocytosis. Prussian blue staining and Atomic absorption spectroscopy were performed to identify and show the iron oxide nanoparticle...
متن کاملMicro-endoscopic system for functional assessment of neural circuits in deep brain regions: Simultaneous optical and electrical recordings of auditory responses in mouse’s inferior colliculus
In vivo Ca2+ imaging is a powerful method for the functional assessment of neural circuits. Although multi-photon excitation fluorescence microscopy has been widely used, observation of circuits in deep brain regions remains challenging. Recently, observing these deep regions has become possible via an endoscope consisting of an optical fiber bundle or gradient-index lens. We have designed a mi...
متن کاملIn vivo two-photon calcium imaging of neuronal networks.
Two-photon calcium imaging is a powerful means for monitoring the activity of distinct neurons in brain tissue in vivo. In the mammalian brain, such imaging studies have been restricted largely to calcium recordings from neurons that were individually dye-loaded through microelectrodes. Previous attempts to use membrane-permeant forms of fluorometric calcium indicators to load populations of ne...
متن کاملSimultaneous imaging of neural activity in three dimensions
We introduce a scanless optical method to image neuronal activity in three dimensions simultaneously. Using a spatial light modulator and a custom-designed phase mask, we illuminate and collect light simultaneously from different focal planes and perform calcium imaging of neuronal activity in vitro and in vivo. This method, combining structured illumination with volume projection imaging, coul...
متن کاملSimultaneous Multi-plane Imaging of Neural Circuits
Recording the activity of large populations of neurons is an important step toward understanding the emergent function of neural circuits. Here we present a simple holographic method to simultaneously perform two-photon calcium imaging of neuronal populations across multiple areas and layers of mouse cortex in vivo. We use prior knowledge of neuronal locations, activity sparsity, and a constrai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 53 شماره
صفحات -
تاریخ انتشار 2007